スクールIE若林東校 仙台市若林区 塾

特訓 特訓 また特訓~♪ (゚∇゚ ;)エッ!? 

<学習塾・個別指導> スクールIE若林東校
仙台市若林区蒲町東20-7(学習塾)

  • TEL.022-762-5234
宮城県高校入試 数学(1次関数③ 令和3年)

宮城県高校入試 数学(1次関数③ 令和3年)

このエントリーをはてなブックマークに追加

令和3度の問題です。

第3問 (1次関数)

Aこの年に1次関数は問題の系統が変わりました。

A過去問対策してきた受験生は面食らったでしょうね・・・

 

1.1次関数の基本形は y=ax+b であり、aはグラフの傾きを示す数字です。

AAaの値が大きいほどy軸に近寄っていくので、正解は (ウ)

 

2.(1) O(0,0)とA(3,4)の距離は 3^2+4^2=25  よって√25=5

(別解) 直角三角形で直角をつくる2辺が4と3なので、斜辺は5

AA(2)直線 ℓ は直線 OAと傾きが等しいので y=4/3x+b とおけます。

AAAAこれが(5,0)を通るので 0=4/3×5+b   よってb=20/3

AAAAAしたがって y=4/3x-20/3

  (3)OAと ℓ は平行なので、この間に作る三角形は高さが同じになります。

AAAAしたがって底辺の長さが1:2になればよいことになり,式は 2BC=AO

AAAAO(0,0)→A(3,4)なので(+3,+4) したがって半分の(+3/2,+2)

AAAAよって C(5+3/2,0+2)=(13/2,2)

AA(4)図形の問題です。

AAAAAP+PBが最小になるためには図Ⅴに書き込んだA´Bが直線になればOKです。

AAAAAA(AP=A´P)のため、同じ長さになります。

AAAAA´はY軸についてAと対象の位置にあるのでA´(-3,4)

AAAAA´Bの式は 傾き-4/8=-1/2の直線が(5,0)を通る

AAAAよって 0=-1/2×5+b ⇒ b=5/2 y=-1/2x+5/2

AAAAすなわち、求めるY座標は5/2となります。

 

 

 

 

« »